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My research interests are in discrete geometry, combinatorial group theory, and graph the-
ory. In particular, I work with abstract polytopes, which are posets that share many key
properties with the face-lattices of convex polytopes. Most of my work has focused on either:

1. Developing combinatorial and algebraic tools and techniques for constructing and ana-
lyzing abstract polytopes with certain symmetries (see [Cunl2al [Cun14bl [CDRFHT15,
CP14, [CP18| [Cun21]), or

2. Classifying minimal polytopes with respect to certain properties (see [CC15, [Cunl4al,
Cunl?, [Cuni8, [CP16l [CM20, [CP21]).

Computational experimentation using the computer algebra system GAP has also been a
key feature of my work, particularly in the analysis of minimal polytopes. I am currently co-
developing a GAP package for working with abstract polytopes. This package incorporates
earlier data sets on regular and chiral polytopes (see [Conl4al [Conl4bl), and it contains a
robust suite of operations for working with abstract polytopes.

Many of the problems I am interested in would be amenable to student research. There
are some classification problems where I have a good idea how to get started, and the main
tools would be basic group theory, graph theory, and counting principles. These problems
are accessible enough that I believe that some “on-the-job” training would be enough to get
a student up and running. For a student with a more computational background, I also
have some project ideas that would involve generating and analyzing data on certain classes
of graphs or finitely presented groups. I would greatly value the opportunity to mentor a
student in mathematics research. I am also interested in broadening my horizons through
collaborations with other mathematicians, using my expertise in combinatorics, discrete
geometry, and group theory to solve applied or theoretical math problems that are outside
my usual area of interest.

1 Abstract polytopes

Here is the basic theory of abstract polytopes, for which [MS02] is the standard reference.
An (abstract) polytope P of rank n (also called an (abstract) n-polytope) is a ranked partially-
ordered set that satisfies the following four properties:



1. There is a unique maximal element F,, of rank n and a unique minimal element F'_; of
rank —1.

2. Each maximal chain contains n + 2 elements, one in each integer rank from —1 to n.

3. If F < @ and rank(G) — rank(F') > 2, then the Hasse diagram of {H | ' < H < G}
is a connected graph.

4. (Diamond Condition) If F' < G and rank(G) — rank(F') = 2, then there are exactly
two elements H such that F' < H < G.

The elements of a polytope are called faces, and a face of rank 7 is called an i-face. In analogy
with convex polytopes, we refer to the faces of rank 0, 1, and n — 1 as vertices, edges, and
facets, respectively. The maximal chains of a polytope are called flags. If two flags differ in
only one face, we say that those flags are adjacent, and if that face is an i-face, we say that
they are i-adjacent. Due to the Diamond Condition, each flag ® has a unique i-adjacent flag
for each i in {0,...,n — 1}, and we denote this flag by ®°.

In ranks —1, 0, and 1, there is a unique polytope up to isomorphism (of posets). Each
abstract 2-polytope has p vertices and p edges for some p satisfying 2 < p < oo, and there
is a unique such polytope for each p. An abstract polyhedron (3-polytopes) can be thought
of as a map, which is an embedding of a connected (multi)graph into a closed surface such
that each connected component of the complement is simply-connected. In general, the face-
lattice of any convex polytope or face-to-face tessellation of a space is an abstract polytope,
but the theory also includes many new structures with a geometric flavor.

It is also possible to represent an n-polytope P by its flag graph. This is a properly edge-
colored n-regular simple graph whose nodes are the flags of P, and where for each flag
® and each i € {0,...,n — 1}, there is an edge labeled i from ® to ®'. The poset can
be recovered from the flag graph: the i-faces correspond to connected components of the
subgraph obtained by deleting all edges with label 7, and two faces are related in the poset
if the corresponding components have nonempty intersection. Many constructions of new
polytopes are more natural to define as operations on a flag graph, rather than on a poset.

If F" and G are faces of a polytope such that F' < G, then we define the section G/F as
G/F={H|F < H<G}.

(In the language of posets, G/F is the closed interval [F,G].) The sections of a polytope
are themselves polytopes. When we talk about a facet F' of an n-polytope, we usually have
in mind the section F'/F_;, which is an (n — 1)-polytope. (Recall that F_; is the unique
minimal element.) If v is a vertex of an n-polytope, then the vertez-figure at v is the section
F,, /v, which again is an (n — 1)-polytope.

An automorphism of P is a bijection that preserves order in both directions (equivalently, a
color-preserving graph automorphism of the flag graph), and the automorphism group of P
is denoted by I'(P). There is a natural action of I'(P) on the flags of P, and this action is
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semi-regular (that is, every automorphism is completely determined by where it sends any
one flag).

Central to the study of polytopes is the characterization of their symmetries. We say that
P is a k-orbit polytope if the action of I'(P) has k orbits on the flags. A polytope is regular
if it is a 1-orbit polytope (in other words, if the action of I'(P) is transitive on flags). If P
is the face-lattice of a convex polytope, then P is regular if and only if P is combinatorially
equivalent to a (geometrically) regular convex polytope.

The automorphism group of a regular polytope has a standard form. Given a regular poly-
tope P, we fix a base flag ®. Then the automorphism group I'(P) is generated by the
abstract reflections py, ..., pn—1, where p; is the unique automorphism that maps ® to ®°.
These generators satisfy p? =1 for all i, and (p;p;)> = 1 for all 7 and j such that |i — j| > 2.
Furthermore, the group I'(P) satisfies the following intersection condition:

F[ﬂFJ:F]mJ for],JQ{O,...,n—l}. (1)

In general, if T' = (pg,...,pn_1) is a group such that each p; has order 2 and such that
(pip;)? = 1 whenever |i— j| > 2, then we say that I is a string group generated by involutions.
If " also satisfies the intersection condition given above, then we call I' a string C-group.
There is a natural way of building a regular polytope P(I') from a string C-group I' such
that I'(P(I")) ~ I" and P(I'(P)) ~ P. In particular, the i-faces of P(I') are taken to be the
cosets of

where I';p < I';op if and only if ¢ < j and I';p NT'j¢0 # 0. This construction of a coset

geometry is also easily applied to any string group generated by involutions (not just string
C-groups), but in that case, the resulting poset is not necessarily a polytope.

2 Chiral polytopes

Among the 2-orbit polytopes, the ones that have received the most attention are the chiral
polytopes [SWO91]. These are polytopes such that whenever two flags are adjacent, they lie
in distinct orbits. Intuitively, this means that chiral polytopes have full rotational symmetry
but do not have mirror symmetry. The study of chiral polytopes has its roots in the study
of chiral (irreflexible) maps (see [CMS80]) and twisted honeycombs (see [Cox70]). As with
regular polytopes, the automorphism groups of chiral polytopes have a standard form, and
it is possible to recover the chiral polytope from its automorphism group. Thus, we typically
work with chiral polytopes by working with their automorphism groups.

Examples of chiral polytopes have been much more difficult to find than regular polytopes,
particularly in ranks 6 and higher. Indeed, until publication of [Pell(], it was unknown
whether there were chiral polytopes in every rank. The main difficulty in constructing
chiral polytopes highlights an important difference from regular polytopes. Given a regular



polytope K, there are infinitely many ways to build a regular polytope P whose facets are
isomorphic to K (see [Pel09]). On the other hand, if K is a chiral polytope with chiral facets,
then there are no chiral polytopes P whose facets are isomorphic to K. Thus, it is not
possible to repeatedly extend a given chiral polytope to higher and higher ranks — we need
genuinely new examples of chiral polytopes in each rank.

In my work, I have described and analyzed several constructions for chiral polytopes. As
a graduate student, I built on the work in [BDJNS09] and [BDJSII] to determine when
the minimal common cover of two chiral polytopes is itself a chiral polytope [Cunl2b]. I
also used this to construct chiral polytopes that are self-dual (isomorphic to the polytope
obtained by reversing the partial order) [Cunl2a]. In [CP14], Daniel Pellicer and I describe
a construction using permutation groups that takes a chiral polytope with regular facets
and produces a chiral polytope with facets isomorphic to .

I have also worked on describing the smallest chiral polytopes. In [Cunl8|, T describe some
infinite families of chiral polyhedra that are minimal in some sense (described in the next sec-
tion), giving presentations and permutation representations for their automorphism groups.
Daniel Pellicer and I recently published a follow-up paper that describes the analogous poly-
topes in rank 4 and shows that there are none in ranks 5 and higher [CP21]. In [CunlT], I
proved that for n > 8, a chiral n-polytope has at least 48(n — 2)(n — 2)! flags. This lower
bound helps explain why the community has had difficulty finding small examples of chiral
polytopes in high ranks.

3 Minimal polytopes

One of my main research interests is finding minimal polytopes. I have mainly focused on
equivelar polytopes, which are defined inductively as follows:

1. Every polygon is equivelar, with Schlafli symbol {p}, where p is how many vertices the
polygon has.

2. An n-polytope is equivelar with Schlafli symbol {p1, ..., p,_1} if its facets are all equiv-
elar (n — 1)-polytopes with Schlafli symbol {py,...,p,_2} and if its vertex-figures are
all equivelar (n — 1)-polytopes with Schlafli symbol {pa, ..., pn_1}.

For example, an equivelar polyhedron (3-polytope) of type {p, ¢} has p-gonal faces, with ¢
edges at every vertex. All regular polytopes and chiral polytopes are equivelar, but being
equivelar by itself does not imply any degree of symmetry.

In [Conl3], Marston Conder showed that the automorphism group of a regular polytope
with Schlafli symbol {p1,...,p,—1} has order 2p; - - - p,_1 or greater. In [Cunl4al, I extended
Conder’s result to show that any equivelar polytope with Schlafli symbol {py,...,p,_1} has
at least 2p; - - - p,_1 flags. A polytope that achieves this lower bound is called tight.



In [Cunl4a], T describe a characterization of tight polytopes using only local information
about which faces are incident to each other. I also constructed tight polyhedra of type
{p,q} for each pair (p,q) with p or ¢ even. The construction amounts to building a g¢-
regular multigraph on p vertices, and designating certain p-cycles as faces, subject to certain
restrictions. Further in this direction, I recently published a manuscript which describes a
construction using edge-colored graphs that can be used to build tight polytopes in higher
ranks, without any particular symmetry requirements [Cun21].

For more group-theoretic results, Daniel Pellicer and I classified the tight reqular polyhedra
in [CP16], and Marston Conder and I classified the Schléfli symbols of tight orientably
reqular n-polytopes [CC15]. T also classified the Schlafli symbols of tight chiral polyhedra in
[Cunl8]. These papers rely on the equivalence between regular or chiral polytopes and finitely
presented groups in a particular form, and in each case, we look for a small normal subgroup
of the automorphism group such that the quotient group is still the automorphism group of
a tight polytope. These results contribute to a broader community project to understand
the possible structure of the automorphism groups of regular and chiral polytopes.

4 Non-regular polytopes

The early work on abstract polytopes focused on regular and chiral polytopes, in part be-
cause the group-theoretic approach was very fruitful. Now there is a growing interest in
polytopes that are less symmetric, requiring new approaches. In [CDRFHTT5], we defined
and examined the symmetry type graph of a polytope, a classification tool that has already
become standard in the community. In [CP18], we described a theory of rooted polytopes and
started the work of adapting the algebraic tools that are commonly used with regular poly-
topes so that they could be used with non-regular polytopes. Many of these new techniques
use either the flag graph of a polytope or the connection group, which simultaneously encodes
information about the flag graph and about the minimal regular cover of the polytope.

Another problem I am working on with Daniel Pellicer is the classification of finite 3-orbit
skeletal polyhedra in E? and E3. A skeletal polyhedron is an embedding of a graph into Eu-
clidean space along with a designation of which cycles are faces, subject to some restrictions
that ensure that the combinatorial structure is an abstract polyhedron. The regular skeletal
polyhedra in E? are the Griinbaum-Dress polyhedra (see [Dre81], [Dre85], and [MS97]), and
the chiral skeletal polyhedra in E? were classified in [Sch04) [Sch05]. Classifying the 3-orbit
skeletal polyhedra is a natural next step, made possible now due to the information about
possible symmetry type graphs of 3-orbit polytopes [CDRFHTI5]. We submitted our first
paper on this project in August, and we are currently finishing up its sequel.



5 Planned and future research

I have several papers and projects in progress, using a variety of approaches. These include:

1. Classification of finite 3-orbit skeletal polyhedra, using graph theory and discrete isom-
etry groups,

2. Universal extensions of polytopes, using voltage graphs,

3. A characterization of which prisms over polytopes have a minimal regular cover that
is itself a polytope, using group theory,

4. Development of a package for GAP to facilitate working with polytopes and related
structures.

More broadly, I intend to continue working on the following projects:

1. Adapting algebraic techniques that are used for regular polytopes to combinatorial
techniques that could be used regardless of symmetry.

2. Studying and classifying minimal polytopes with certain characteristics.
3. Classifying highly-symmetric skeletal polyhedra in E? and E3.

4. Using our GAP package for analyzing data on abstract polytopes.

I like to explore new approaches often. I would be interested in learning more about per-
mutation groups and about algebraic graph theory to see how I can use those results with
abstract polytopes. I am also interested in learning more about other structures that are
similar to abstract polytopes, such as incidence geometries, and to see how to adapt some
of our community’s tools to problems in related areas.
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